Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.726
Filtrar
2.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566248

RESUMO

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Assuntos
Receptor alfa de Estrogênio , Fármacos Neuroprotetores , Criança , Feminino , Animais , Masculino , Camundongos , Humanos , Receptor alfa de Estrogênio/metabolismo , Neuroproteção , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Isquemia , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
3.
J Pineal Res ; 76(3): e12951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572848

RESUMO

Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.


Assuntos
Melatonina , Animais , Melatonina/metabolismo , Neuroproteção , Retina/metabolismo , Receptores de Melatonina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Mamíferos/metabolismo
4.
Sci Rep ; 14(1): 7973, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575687

RESUMO

In patients suffering from cerebral ischemic stroke, there is an urgent need for treatments to protect stressed yet viable brain cells. Recently, treatment strategies that induce neuronal activity have been shown to be neuroprotective. Here, we hypothesized that neuronal activation might maintain or trigger the astrocyte-to-neuron lactate shuttle (ANLS), whereby lactate is released from astrocytes to support the energy requirements of ATP-starved hypoxic neurons, and this leads to the observed neuroprotection. We tested this by using a human cell based in vitro model of the ischemic penumbra and investigating whether lactate might be neuroprotective in this setting. We found that lactate transporters are involved in the neuroprotective effect mediated by neuronal activation. Furthermore, we showed that lactate exogenously administered before hypoxia correlated with neuroprotection in our cellular model. In addition, stimulation of astrocyte with consequent endogenous production of lactate resulted in neuroprotection. To conclude, here we presented evidence that lactate transport into neurons contributes to neuroprotection during hypoxia providing a potential basis for therapeutic approaches in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácido Láctico , Neuroproteção , Encéfalo , Astrócitos , Hipóxia
5.
Neurosurg Rev ; 47(1): 193, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662220

RESUMO

This critique examines a 12-year retrospective study on serum magnesium concentration-guided administration of magnesium sulfate in 548 patients with aneurysmal subarachnoid hemorrhage (aSAH). The study reported that maintaining serum magnesium levels between 2 and 2.5 mmol/L reduced rates of delayed cerebral infarction and improved clinical outcomes. However, limitations due to its retrospective nature, single-center design, and unequal treatment group sizes may affect generalizability. Future multicentric randomized controlled trials are recommended to validate these findings and refine magnesium dosing strategies for aSAH treatment.


Assuntos
Sulfato de Magnésio , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Sulfato de Magnésio/administração & dosagem , Estudos Retrospectivos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Resultado do Tratamento , Feminino , Administração Intravenosa , Pessoa de Meia-Idade , Masculino , Neuroproteção/efeitos dos fármacos , Infarto Cerebral/prevenção & controle , Infarto Cerebral/tratamento farmacológico , Adulto
6.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612476

RESUMO

The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Criança , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipercapnia , Dióxido de Carbono , Hipóxia
7.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612761

RESUMO

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Assuntos
Acetilcisteína/análogos & derivados , Doença de Parkinson , Sinucleinopatias , Humanos , Animais , Ratos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , alfa-Sinucleína/genética , Chaperona BiP do Retículo Endoplasmático , Administração Intranasal , Neuroproteção
8.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612856

RESUMO

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Camundongos , Resveratrol/farmacologia , Neuroproteção , Administração Intranasal , Encefalomielite Autoimune Experimental/tratamento farmacológico
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 563-570, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597448

RESUMO

OBJECTIVE: To observe neuroprotective effects of Ca2+/calmodulin-dependent kinase Ⅱ (CaMK Ⅱ)γ and CaMkII δ against acute neuronal ischemic reperfusion injury in mice and explore the underlying mechanism. METHODS: Primary cultures of brain neurons isolated from fetal mice (gestational age of 18 days) were transfected with two specific siRNAs (si-CAMK2G and si-CAMK2D) or a control sequence (si-NT). After the transfection, the cells were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) conditions for 1 h followed by routine culture. The expressions of phosphatidylinositol-3-kinase/extracellular signal-regulated kinase (PI3K/Akt/Erk) signaling pathway components in the neurons were detected using immunoblotting. The expressions of the PI3K/Akt/Erk signaling pathway proteins were also detected in the brain tissues of mice receiving middle cerebral artery occlusion (MCAO) or sham operation. RESULTS: The neuronal cells transfected with siCAMK2G showed significantly lower survival rates than those with si-NT transfection at 12, 24, 48, and 72 h after OGD/R (P < 0.01), and si-CAMK2G transfection inhibited OGD/R-induced upregulation of CaMKⅡγ expression. Compared to si-NT, transfection with si-CAMK2G and si-CAMK2D both significantly inhibited the expressions of PI3K/Akt/Erk signaling pathway components (P < 0.01). In the mouse models of MCAO, the expressions of CaMKⅡδ and CaMKⅡγ were significantly increased in the brain, where activation of the PI3K/Akt/Erk signaling pathway was detected. The expression levels of CaMKⅡδ, CaMKⅡγ, Erk, phosphorylated Erk, Akt, and phosphorylated Akt were all significantly higher in MCAO mice than in the sham-operated mice at 24, 48, 72, and 96 h after reperfusion (P < 0.05). CONCLUSION: The neuroprotective effects of CaMKⅡδ and CaMKⅡγ against acute neuronal ischemic reperfusion injury are mediated probably by the PI3K/Akt/Erk pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Camundongos , Ratos , Isquemia Encefálica/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Infarto da Artéria Cerebral Média , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
10.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607082

RESUMO

Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Lactente , Rivastigmina/farmacologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Neuroproteção , Neurônios Colinérgicos/metabolismo , Tauopatias/tratamento farmacológico , Colinérgicos , Camundongos Transgênicos
11.
Multimedia | Recursos Multimídia | ID: multimedia-12939

RESUMO

Encontro com os Especialistas Sérgio Marba, médico neonatologista do Hospital da Mulher Caism/Unicamp, professor do Departamento de Pediatria da FCM/Unicamp, consultor neonatal e do Método Canguru/MS e membro do Grupo Executivo do Programa de Reanimação Neonatal (PRN/SBP); Mônica Aparecida Pessoto, médica neonatologista do Hospital da Mulher Caism/Unicamp, professora do Departamento de Pediatria da FCM/Unicamp e consultora do Método Canguru/MS; José Paulo de Siqueira Guida, médico obstetra, professor doutor do departamento de tocoginecologia da FCM/Unicamp; Nicole Gianini, médica neonatologista, consultora do Método Canguru/MS, membro do Departamento de Perinatologia da SBP e SOPERJ.


Assuntos
Neuroproteção , Recém-Nascido Prematuro , Método Canguru , Leite Humano , Nutrição do Lactente , Lesões Encefálicas/prevenção & controle , Fatores de Crescimento Neural
12.
Methods Mol Biol ; 2761: 277-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427244

RESUMO

Millions of people throughout the world are affected by neurodegenerative disorders like Alzheimer's disease (AD), making them a major public health concern. To create successful medicines, early diagnosis and illness monitoring are required. Emerging as possible diagnostic and treatment tools for neurodegenerative illnesses are biomarkers such as microRNAs (miRNAs). In the realm of neuroscience, miRNAs have been discovered to function as essential regulators of gene expression, with roles spanning development, differentiation, and illness. Several neurodegenerative diseases, including AD, have been linked to miRNA dysregulation. As high-throughput methods have been developed for monitoring miRNA expression and identifying miRNA targets, miRNAs have become a prime candidate for use in diagnostics and therapy. The techniques for isolating miRNAs and the most up-to-date computational methods for finding miRNA target transcripts are both described in this chapter. This chapter will be a helpful reference for anyone investigating the role of miRNAs in AD and related neurodegenerative illnesses.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Alzheimer/metabolismo , Neuroproteção , Biomarcadores/metabolismo , Perfilação da Expressão Gênica/métodos
13.
Methods Mol Biol ; 2761: 337-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427249

RESUMO

The gradual loss of neurons' structure and function in the central nervous system is known as neurodegeneration. It is a defining feature of several incapacitating illnesses, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The buildup of amyloid beta (Aß) protein in the brain is one of the several variables linked to neurodegeneration. We shall delve into the fascinating realm of Aß in this chapter and examine its role in the etiology of neurodegenerative illnesses. Insights into the processes through which Aß exerts its toxicity are crucial for the creation of therapeutic approaches to treat these life-threatening diseases. Despite the presence of multiple obstacles, recent research shows promise for the development of some new anti-Aß therapies that will help millions of people suffering from neurodegeneration. In this chapter, we discuss the role of Aß in contributing to neurotoxicity and several anti-Aß therapies for neuroprotection.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Peptídeos beta-Amiloides/metabolismo , Neuroproteção/fisiologia , Doença de Alzheimer/metabolismo , Doença de Parkinson/terapia
14.
J Transl Med ; 22(1): 248, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454480

RESUMO

BACKGROUND: Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS: The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS: We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION: This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Neuroproteção , Simulação de Acoplamento Molecular , Resposta a Proteínas não Dobradas , Isquemia , Autofagia , Infarto , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
15.
Front Endocrinol (Lausanne) ; 15: 1286066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469139

RESUMO

Historically, progesterone has been studied significantly within the context of reproductive biology. However, there is now an abundance of evidence for its role in regions of the central nervous system (CNS) associated with such non-reproductive functions that include cognition and affect. Here, we describe mechanisms of progesterone action that support its brain-protective effects, and focus particularly on the role of neurotrophins (such as brain-derived neurotrophic factor, BDNF), the receptors that are critical for their regulation, and the role of certain microRNA in influencing the brain-protective effects of progesterone. In addition, we describe evidence to support the particular importance of glia in mediating the neuroprotective effects of progesterone. Through this review of these mechanisms and our own prior published work, we offer insight into why the effects of a progestin on brain protection may be dependent on the type of progestin (e.g., progesterone versus the synthetic, medroxyprogesterone acetate) used, and age, and as such, we offer insight into the future clinical implication of progesterone treatment for such disorders that include Alzheimer's disease, stroke, and traumatic brain injury.


Assuntos
Progesterona , Progestinas , Progesterona/farmacologia , Progestinas/farmacologia , Neuroproteção , Receptores de Progesterona/metabolismo , Encéfalo/metabolismo
16.
Pharmacol Res Perspect ; 12(2): e1181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429943

RESUMO

Our laboratory has shown that calpain-2 activation in the brain following acute injury is directly related to neuronal damage and the long-term functional consequences of the injury, while calpain-1 activation is generally neuroprotective and calpain-1 deletion exacerbates neuronal injury. We have also shown that a relatively selective calpain-2 inhibitor, referred to as C2I, enhanced long-term potentiation and learning and memory, and provided neuroprotection in the controlled cortical impact (CCI) model of traumatic brain injury (TBI) in mice. Using molecular dynamic simulation and Site Identification by Ligand Competitive Saturation (SILCS) software, we generated about 130 analogs of C2I and tested them in a number of in vitro and in vivo assays. These led to the identification of two interesting compounds, NA-112 and NA-184. Further analyses indicated that NA-184, (S)-2-(3-benzylureido)-N-((R,S)-1-((3-chloro-2-methoxybenzyl)amino)-1,2-dioxopentan-3-yl)-4-methylpentanamide, selectively and dose-dependent inhibited calpain-2 activity without evident inhibition of calpain-1 at the tested concentrations in mouse brain tissues and human cell lines. Like NA-112, NA-184 inhibited TBI-induced calpain-2 activation and cell death in mice and rats, both male and females. Pharmacokinetic and pharmacodynamic analyses indicated that NA-184 exhibited properties, including stability in plasma and liver and blood-brain barrier permeability, that make it a good clinical candidate for the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Humanos , Masculino , Camundongos , Ratos , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Calpaína/antagonistas & inibidores , Neuroproteção , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia
17.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474278

RESUMO

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Canais de Ânion Dependentes de Voltagem , Camundongos , Animais , Canais de Ânion Dependentes de Voltagem/metabolismo , Neuroproteção , Doenças Neurodegenerativas/metabolismo , Proteínas ras/metabolismo , Regulação para Baixo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Membrana Celular/metabolismo , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo
18.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474376

RESUMO

There is no choice other than rehabilitation as a practical medical treatment to restore impairments or improve activities after acute treatment in people with spinal cord injury (SCI); however, the effect is unremarkable. Therefore, researchers have been seeking effective pharmacological treatments. These will, hopefully, exert a greater effect when combined with rehabilitation. However, no review has specifically summarized the combinatorial effects of rehabilitation with various medical agents. In the current review, which included 43 articles, we summarized the combinatorial effects according to the properties of the medical agents, namely neuromodulation, neurotrophic factors, counteraction to inhibitory factors, and others. The recovery processes promoted by rehabilitation include the regeneration of tracts, neuroprotection, scar tissue reorganization, plasticity of spinal circuits, microenvironmental change in the spinal cord, and enforcement of the musculoskeletal system, which are additive, complementary, or even synergistic with medication in many cases. However, there are some cases that lack interaction or even demonstrate competition between medication and rehabilitation. A large fraction of the combinatorial mechanisms remains to be elucidated, and very few studies have investigated complex combinations of these agents or targeted chronically injured spinal cords.


Assuntos
Medicina , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Neuroproteção
19.
Cell Rep ; 43(4): 113980, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520693

RESUMO

In the brain, the role of matrilin-3, an extracellular matrix component in cartilage, is unknown. Here, we identify that matrilin-3 decreased in reactive astrocytes but was unchanged in neurons after ischemic stroke in animals. Importantly, it declined in serum of patients with acute ischemic stroke. Genetic or pharmacological inhibition or supplementation of matrilin-3 aggravates or reduces brain injury, astrocytic cell death, and glial scar, respectively, but has no direct effect on neuronal cell death. RNA sequencing demonstrates that Matn3-/- mice display an increased inflammatory response profile in the ischemic brain, including the nuclear factor κB (NF-κB) signaling pathway. Both endogenous and exogenous matrilin-3 reduce inflammatory mediators. Mechanistically, extracellular matrilin-3 enters astrocytes via caveolin-1-mediated endocytosis. Cytoplasmic matrilin-3 translocates into the nucleus by binding to NF-κB p65, suppressing inflammatory cytokine transcription. Extracellular matrilin-3 binds to BMP-2, blocking the BMP-2/Smads pathway. Thus, matrilin-3 is required for astrocytes to exert neuroprotection, at least partially, by suppressing astrocyte-mediated neuroinflammation.


Assuntos
Astrócitos , AVC Isquêmico , Proteínas Matrilinas , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Neuroproteção , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Neuroproteção/efeitos dos fármacos , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Humanos , Masculino , Proteínas Matrilinas/metabolismo , Transdução de Sinais , Camundongos Knockout , NF-kappa B/metabolismo
20.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527652

RESUMO

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Assuntos
Lesões Encefálicas , Estado Epiléptico , Ratos , Animais , Diazepam/farmacologia , Midazolam/farmacologia , Midazolam/uso terapêutico , Isoflurofato/farmacologia , Organofosfatos , Doenças Neuroinflamatórias , Neuroproteção , Ratos Sprague-Dawley , Encéfalo/metabolismo , Benzodiazepinas/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Proteínas de Transporte/metabolismo , Imageamento por Ressonância Magnética , Lesões Encefálicas/metabolismo , Atrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...